MSSM Charged Higgs from Top Quark Decays

Marcela Carena Fermilab

Top Quark Symposium Michigan Center for Theoretical Physics University of Michigan, Ann Arbor, April 2005

based on works done in collaboration with: Boos, Buchinev, J. Ellis, Espinosa, Garcia, Haber, J.-S. Lee, Quiros, Mrenna, Pilaftsis, Nierste, and Wagner

Standard Model → effective theory Supersymmetry → interesting alternative BSM

If SUSY exists, many of its most important motivations demand some SUSY particles at the TeV range or below

- solve the hierarchy problem
- generate EWSB by quantum corrections
- Allow for gauge coupling unification at a scale $\approx 10^{16} \, \text{GeV}$ 3.
- induce a large top quark mass from Yukawa coupling evolution.
- 5. provide a good dark matter candidate: the lightest neutralino
- 6. provide a possible solution to baryogenesis

Minimal model: 2 Higgs SU(2) doublets 5 physical states:

2 CP-even h, H with mixing angle α

1 CP-odd A

and a charged pair H^{\pm}

Higgs Physics: important tool in understanding Supersymmetry

MSSM Higgs sector at Tree-Level

 H_1, H_2 doublets \Longrightarrow 2 CP-even Higgs h, H = 1 CP-odd state A = 2 charged Higgs H $^{\pm}$

Higgs masses and couplings given in terms of two parameters:

$$m_A$$
 and $\tan \beta \equiv v_2/v_1$ mixing angle $\alpha \Longrightarrow \cos^2(\beta - \alpha) = \frac{m_h^2 (m_Z^2 - m_h^2)}{m_A^2 (m_H^2 - m_h^2)}$

Couplings to gauge bosons and fermions (norm. to SM)

hZZ, hWW, ZHA, WH
$$^{\pm}$$
H $\longrightarrow \sin(\beta - \alpha)$
HZZ, HWW, ZhA, WH $^{\pm}$ h $\longrightarrow \cos(\beta - \alpha)$

$$(h,H,A) \ u\bar{u} \longrightarrow \cos\alpha/\sin\beta, \ \sin\alpha/\sin\beta, \ 1/\tan\beta$$

(h,H,A)
$$d\bar{d}/l^+l^- \longrightarrow -\sin\alpha/\cos\beta$$
, $\cos\alpha/\cos\beta$, $\tan\beta$

$$(h,H,A) \frac{d\bar{d}/l^{+}l^{-} \longrightarrow -\sin\alpha/\cos\beta, \cos\alpha/\cos\beta, \tan\beta}{g_{H^{-}t\bar{b}}} = \frac{\sqrt{2}}{v} \left[m_{t}\cot\beta P_{R} + m_{b}\tan\beta P_{L} \right]; g_{H^{-}\tau^{+}v} = \frac{\sqrt{2}}{v} \left[m_{\tau}\tan\beta P_{L} \right]$$

If
$$m_A \gg M_Z$$
 $\downarrow \downarrow$

$$\bullet \cos(\beta - \alpha) = 0$$

up to correc.
$$\mathcal{O}(m_Z^2/m_A^2)$$

If
$$\mathrm{m_A} >> \mathrm{M_Z}$$
 \downarrow
 o $\mathrm{cos}(\beta - \alpha) = 0$ up to correc. $\mathcal{O}(m_Z^2/m_A^2)$
 o lightest Higgs has SM-like couplings and mass $m_h^2 \simeq m_Z^2 \cos^2 2\beta$
 o other Higgs bosons: heavy and roughly degenerate limit $m_A \simeq m_H \simeq m_H^\pm$ up to correc. $\mathcal{O}(m_Z^2/m_A^2)$

$$m_A \simeq m_H \simeq m_H^{\pm}$$
 up to correc. $\mathcal{O}(m_Z^2/m_A^2)$

Radiative corrections to Higgs Masses

After quantum corrections, Higgs mass shifted due to incomplete cancellation of particles and superparticles in the loops

Main effects: top and stop loops; bottom and sbottom loops for large tanb

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{2 g_2^2 m_t^4}{8\pi^2 M_W^2} \left[\ln(M_S^2/m_t^2) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] + \text{h.o.}$$

$$M_S^2 = \frac{1}{2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)$$
 and $X_t = A_t - \mu/\tan\beta$

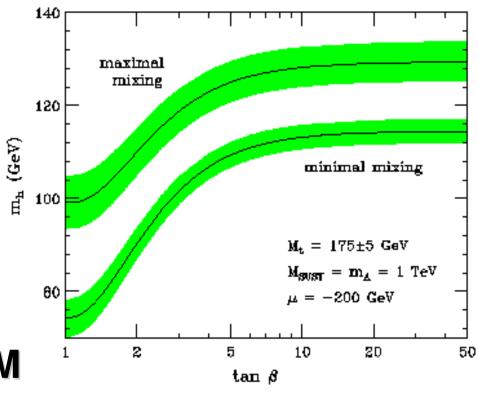
Main Quantum effects:

 $m_{\,t}^{\,4}$ enhancement ; dependence on stop mixing $X_{\,t}$ and logarithmic sensitivity to $M_{\,S}$

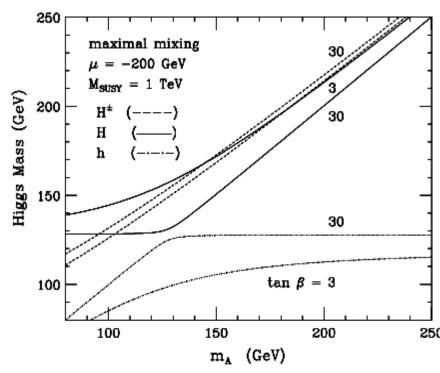
Upper bound:

$$m_h \leq 135 \text{ GeV}$$

stringent test of the MSSM



MSSM Higgs Masses as a function of MA



$$m_H^2\cos^2(\beta-\alpha)+m_h^2\sin^2(\beta-\alpha)=[m_h^{max}(\tan\beta)]^2$$

- $\cos^2(\beta \alpha) \to 1$ for large $\tan \beta$, low m_A \Longrightarrow H has SM-like couplings to W,Z
- $\sin^2(\beta \alpha) \to 1$ for large m_A \Longrightarrow h has SM-like couplings to W,Z

for large $\tan \beta$:

always one CP-even Higgs with SM-like couplings to W,Z and mass below $m_h^{max} \leq 135~{\rm GeV}$

Mild variation of the charged Higgs with SUSY spectrum

LEP MSSM HIGGS limits:

$$m_h > 91.0 \text{GeV}; \quad m_A > 91.9 \text{GeV}; \quad m_{H^{\pm}} > 78.6 \text{GeV}$$

 $m_h^{\text{SM-like}} > 114.6 \text{GeV}$

Radiative Corrections to Higgs Couplings

Through rad. correc. to the CP-even Higgs mass matrix, $\delta \mathcal{M}_{ij}^2$, which defines the mixing angle α

$$\sin \alpha \cos \alpha = \mathcal{M}_{12}^2 / \sqrt{(\text{Tr}\mathcal{M}^2)^2 - 4 \det \mathcal{M}^2}$$

important effects of rad. correc. on $\sin \alpha$ or $\cos \alpha$ depending on sign of μA_t and magnitude of A_t/M_S .

- ⇒ govern couplings of Higgs to fermions
- \implies via rad. correc. to $\cos(\beta \alpha)$ and $\sin(\beta \alpha)$ governs Higgs couplings to vector bosons
- 2 SUSY vertex correc. to Yukawa couplings, which modify the effective Lagrangian, coupling Higgs to fermions

$$\mathcal{L}_{ ext{eff}} \longrightarrow h_b H_1^0 \ b ar{b} + \Delta h_b \ H_2^0 \ b ar{b}$$

 Δh_b modifies the m_b - h_b relation

$$m_b \simeq h_b v_1 + \Delta h_b v_2 = h_b v \cos \beta \left(1 + \frac{\Delta h_b}{h_b} \tan \beta \right)$$

$$\Delta_b = \frac{\Delta h_b}{h_b} \tan \beta \sim \frac{2\alpha_S}{3\pi} \frac{\mu M_{\tilde{g}}}{\max(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, M_{\tilde{g}}^2)} \tan \beta + \Delta_b^{\tilde{t}\tilde{\chi}^+}$$

$$\Delta_b \sim \mathcal{O}(1)$$
 if $\tan \beta$ large

$$\Delta_b^{ar{t}ar{\chi}^+} \sim rac{h_t^2}{16\pi^2} rac{\mu A_t}{\max(m_{ar{t}_1}^2, m_{ar{t}_2}^2, \mu^2)} an eta$$

More generally we can write the Effective Lagrangian:

$$-\mathcal{L}_{\text{eff}} = \epsilon_{ij} \left[(h_b + \delta h_b) \bar{b}_R H_d^i Q_L^j + (h_t + \delta h_t) \bar{t}_R Q_L^i H_u^j \right]$$
$$+ \Delta h_t \bar{t}_R Q_L^k H_d^{k*} + \Delta h_b \bar{b}_R Q_L^k H_u^{k*} + \text{h.c.}$$

The resulting interaction Lagrangian defining the couplings of the physical Higgs bosons to third generation fermions:

$$\mathcal{L}_{\rm int} = -\sum_{q=t,b,\tau} \left[g_{hq\bar{q}}hq\bar{q} + g_{Hq\bar{q}}Hq\bar{q} - ig_{Aq\bar{q}}A\bar{q}\gamma_5 q \right] + \left[\bar{b}g_{H^-t\bar{b}}tH^- + \text{h.c.} \right].$$

$$g_{h \ bar{b}} \simeq rac{-\sinlpha \, m_b}{v\,\coseta(1+\Delta_b)} \left(1-\Delta_b/\tanlpha \, aneta
ight) \qquad g_{H \ bar{b}} \simeq rac{\coslpha \, m_b}{v\,\coseta(1+\Delta_b)} \left(1-\Delta_b anlpha/ aneta
ight)$$

$$g_{A\,bar{b}}\simeq rac{m_b}{v(1+\Delta_b)}\, aneta$$

Similarly, $g_{(h/H/A),\tau^+\tau^-}$ replacing $m_b \to m_\tau$, $\Delta_b \to \Delta_\tau$

and $g_{(h/H/A),t\bar{t}}$ replacing $m_b \to m_t$, $\Delta_b \to \Delta_t$, $\tan \beta$, $\tan \alpha \to 1/\tan(\beta)$, $1/\tan(\alpha)$ (no $\tan \beta$ enhancement in Δ_t ; $\Delta_\tau \ll \Delta_b$)

For the charged Higgs one has important radiative corrections for large tanb

$$g_{H^-t\bar{b}} \simeq \left\{ \frac{m_t}{v} \cot \beta \left[1 - \frac{1}{1 + \Delta_t} \frac{\Delta h_t}{h_t} \tan \beta \right] P_R + \frac{m_b}{v} \tan \beta \left[\frac{1}{(1 + \Delta_b)} \right] P_L \right\}$$

also Δm_{τ} corrections in $g_{H^{-}\tau\nu_{\tau}}$ may be included.

Important modifications of coupling due to radiative corrections: depending on MSSM parameter space

- \longrightarrow dep. on sign and values of μA_t , μA_b , $\mu M_{\tilde{g}}$ and magnitudes of $M_{\tilde{g}}/M_S$, μ/M_S
- destroy the basic relation: $g_{h\,b\bar{b}}/g_{h\,\tau\tau} \sim m_b/m_\tau$
- ullet strong suppression of coupling of h (H) to bottoms if

$$\tan \alpha \simeq \Delta_b / \tan \beta$$
 $((\tan \alpha)^{-1} \simeq -\Delta_b / \tan \beta)$
 $g_{h b \bar{b}} \simeq 0$; $g_{h \tau \tau} \simeq -\frac{m_{\tau}}{v} \Delta_b$ $(h \leftrightarrow H)$

- \implies main decay modes of SM-like MSSM Higgs: $b\bar{b}\sim 80\%$ $\tau^+\tau^-\sim 7-8\%$ $drastically\ changed <math>\implies$ other decay modes enhanced
 - strong suppresion/enhancement of the charged Higgs coupling to top-bottom depending on sign of $\Delta_b = \frac{\Delta h_b}{h_b} \tan \beta$, \Rightarrow sign of mu for positive gluino mass
 - Similar behaviour for the CP-odd higgs b-b coupling

Renormalization Group Effects

- tanb enhanced correc. to h_b are not the only universal ones
- Standard QCD corrections to transitions involving $\bar{t}_L b_R H^+$ Yukawa interactions → $log(Q/m_b)$
- -- Summation to all orders in leading logs $\alpha_s^n \log^n(Q/m_b)$ done evaluating running $h_b(Q) \longleftrightarrow m_b(Q)$
- -- Full one-loop QCD correc. to decay rates require summation of NLO logs $\alpha_s^{n+1} \log^n(Q/m_b)$ due to non-log α_s terms

To consider both effects: using OPE + RG evolution in \overline{MS}

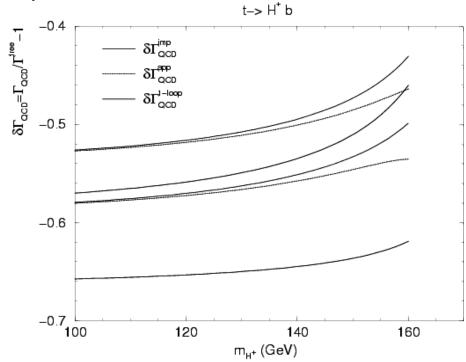
$$\overline{h}_b(Q = m_b) = \frac{\overline{m}_b(Q = m_b)}{v} \frac{1}{1 + \Delta m_b(Q = M_{SUSY})} \tan \beta$$

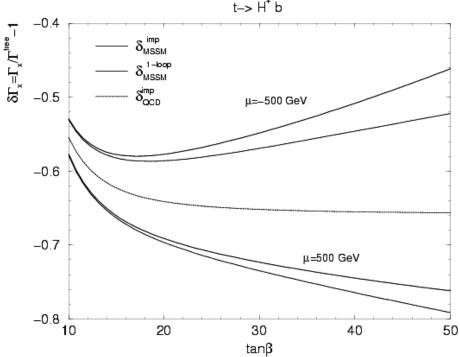
with Q the caracteristic scale of the process

Quantum Corrections to $\Gamma(t \rightarrow bH^+)$

- leading and subleading $\log(Q/mb)$ resummed using mb running in Γ^0
- One-loop finite QCD terms also included

$$\Gamma_{QCD}^{imp.}(t \to bH^+, \tan \beta \ge 10) = \frac{g^2}{64\pi M_W^2} m_t (1 - q_{H^+})^2 \overline{m}_b^2(m_t^2) \tan^2 \beta \times \left\{ 1 + \frac{\alpha_s(m_t^2)}{\pi} \times \left[7 - \frac{8\pi^2}{9} - 2\log(1 - q_{H^+}) + 2(1 - q_{H^+}) + \left(\frac{4}{9} + \frac{2}{3}\log(1 - q_{H^+}) \right) (1 - q_{H^+})^2 \right] \right\}$$



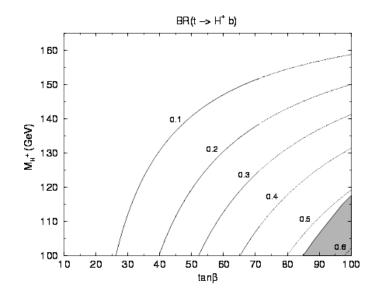


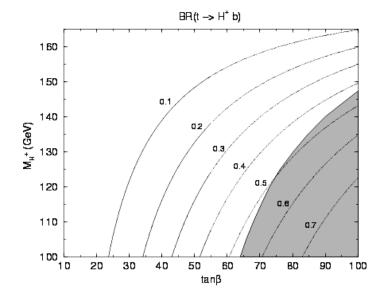
→ After higher order tanb enhanced SUSY corrections included:

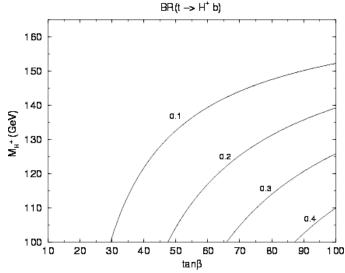
$$\Gamma_{MSSM}^{imp}$$
 $(t \rightarrow bH^+, \tan \beta \ge 10) = \Gamma_{QCD}^{imp} \cdot \frac{1}{(1 + \Delta m_b)^2}$

Charged Higgs Searches at the Tevatron

(a Runl example soon to be improved: Eusebi et al. (CDF) in prep.)



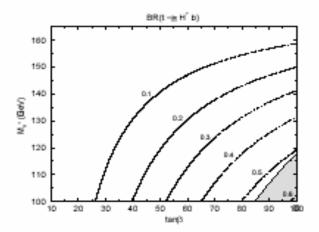




Charged Higgs searches at the Tevatron

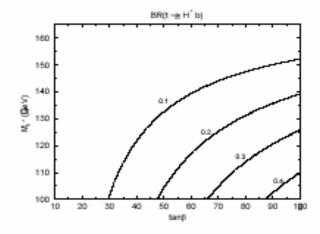
 Curves of constant BR for t → bH⁺ after resummation of LO and NLO logarithms of QCD corrections included applying OPE

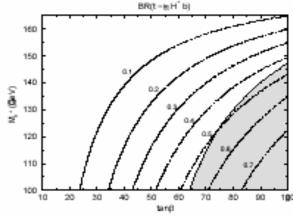
> Shaded area excluded by Run1 DØ frequentist analysis from H^{\pm} searches in top decays



Including dominant SUSY correc. for large tan β and a heavy SUSY spectrum

based on
$$\mathcal{L} \simeq \frac{g}{\sqrt{2}M_W} \frac{\bar{m}_b(Q) \tan \beta}{1 + \Delta m_b} \left[V_{tb} H^+ \bar{t}_L b_R(Q) + \text{h.c.} \right] \Longrightarrow \Gamma_{MSSM} \simeq \frac{\Gamma_{QCD}^{imp.}}{(1 + \Delta mb)^2}$$

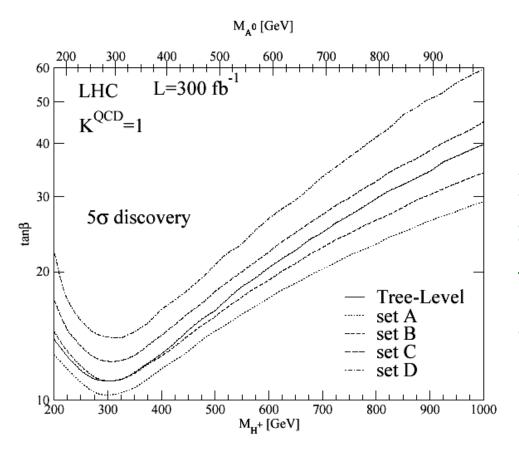




Drastic variations on $\tan \beta$ $-m_{H^{\pm}}$ plane bounds, depending on MSSM parameter space

M.C., Garcia, Nierste, Wagner

Similar analysis for $pp \to H^+tb + X$ at LHC for large $\tan \beta$



Discovery reach at the LHC for different sets of SUSY parameters, which can enhance or suppress the $H^{\pm}tb$ coupling

Discovery reach at LHC with 300 fb⁻¹ and $\tan \beta > 30$

- best case scenario: $m_{H^+} \leq 1 \text{ TeV}$
- worst case scenario: $m_{H^+} \leq 450 \text{ GeV}$

Belyaev, Garcia, Gausch, Sola

Tau Polarization & Charged Higgs Measurements

• In the range $m_{H^+} < m_t \Rightarrow BR(H^{\pm} \to \tau^+ v / \tau^- \overline{v}) \approx 1$ it seems difficult to identify $H^{\pm} \to \tau \nu$ decays from $W^{\pm} \to \tau \nu$

Crucial Observation:

$$W^- \to \tau_L^- \overline{\nu}_R \qquad (W^+ \to \tau_R^+ \nu_L)$$

Due to the lefthandness of the charged current: $L \propto W^- \overline{e}_L \gamma_{\mu} v_L + h.c.$ whereas

$$\mathrm{H}^- \to \tau_R^- \overline{\nu}_R \qquad (\mathrm{H}^+ \to \tau_L^+ \nu_L)$$

(vector boson) couplings

Hence:
$$P_{\tau}^H = +1$$
 $P_{\tau}^W = -1$

This holds in general in models with V_I and \overline{V}_R only

By convention:
$$P_{\tau} \equiv P_{\tau^{-}} = -P_{\tau^{+}}$$

$$P_{\tau^{\mp}} = \frac{\sigma_{\tau_{R}^{\pm}} - \sigma_{\tau_{L}^{\pm}}}{\sigma_{\tau_{R}^{\pm}} + \sigma_{\tau_{L}^{\pm}}}$$

- The decay distributions of the \mathcal{T}_R^- are sufficiently different from those of \mathcal{T}_L^+

Considering the main contributions to one-prong hadronic tau decays: $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau} \ (12.5\%);$

$$\tau^{\pm} \to \rho^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^{0} \nu_{\tau} \quad (24\%) \qquad \qquad \tau^{\pm} \to a_{1}^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^{0} \pi^{0} \nu_{\tau} \quad (7.5\%)$$

The dependence of the tau polarization of the angular distributions of the primary decay modes in the tau rest frame

$$\frac{1}{\Gamma_{\pi}} \frac{\mathrm{d}\Gamma_{\pi}}{\mathrm{d}\cos\theta} = \frac{1}{2} (1 + P_{\tau}\cos\theta)$$

$$\frac{1}{\Gamma_{vL}} \frac{\mathrm{d}\Gamma_{vL}}{\mathrm{d}\cos\theta} = \frac{m_{\tau}^2 / 2}{m_{\tau}^2 + 2m_{v}^2} (1 + P_{\tau}\cos\theta)$$

$$\frac{1}{\Gamma_{\text{vT}}} \frac{\text{d}\Gamma_{\text{vT}}}{\text{d}\cos\theta} = \frac{m_{\text{v}}^2}{m_{\tau}^2 + 2m_{\text{v}}^2} (1 - P_{\tau} \cos\theta)$$

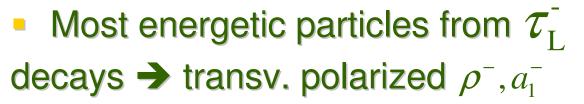
all three channels have an important dependence on P_{τ}

For this study I will only use $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$

In the colinear limit $E_{\tau}/m_{\tau} >> 1$

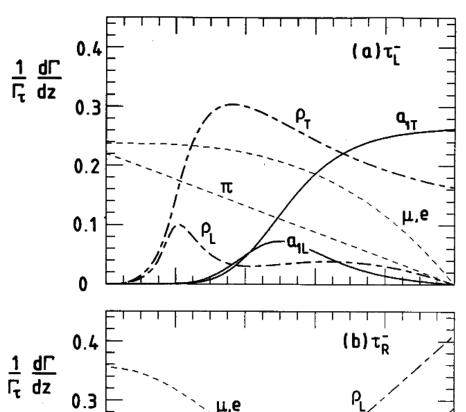
$$\frac{1}{\Gamma_{\tau}} \frac{\mathrm{d}\Gamma_{\pi}}{\mathrm{d}z} \approx \mathrm{BR}_{\pi} [1 + \mathrm{P}_{\tau} \ (2z - 1)]; \qquad z = \frac{\mathrm{E}_{\pi}}{\mathrm{E}_{\tau}} \quad \frac{1}{\Gamma_{\tau}} \frac{\mathrm{d}\Gamma}{\mathrm{d}z}$$

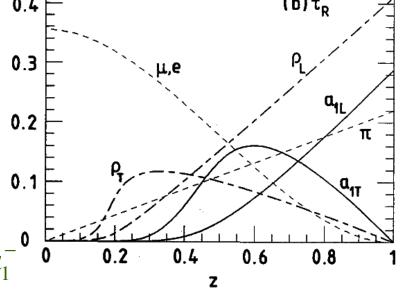
Energy distributions arising from $W^- \to \tau_{\rm L}^- \to {\rm h}^-$ are significantly different from ${\rm H}^- \to \tau_{\rm R}^- \to {\rm h}^-$ decays



• Most energetic particles from $\tau_{\rm R}$

decays $\rightarrow \pi^-$ & long. polarized ρ^-, a_1^-





Energetic pions favour charged Higgs over W's

Charged Higgs searches at the ILC: the impact of tau Polarization

• We consider $e^+e^- \rightarrow t\bar{t} \rightarrow W^{\pm}b H^{\mp}\bar{b}$

$$\rightarrow$$
 with W \rightarrow 2 jets

$$\sqrt{s} = 500 \,\text{GeV}$$
 and $500 \,\text{fb}^{-1}$

 \rightarrow and $H^{\mp} \rightarrow \tau^{\mp} \nu$

Main background: both tops decay into Wb and $W^{\scriptscriptstyle \mp} \to \tau^{\scriptscriptstyle \mp} \nu$

- Simulations done with CompHEP, including ISR and beamstrahlung with polarized au
- Polarized \mathcal{T} decays with TAUOLA, using new CompHEP-TAUOLA interfase (E. Boos et al.)
- All other stages done with CompHEP-Pythia interface
- Energy distributions are given in the reconstracted top rest frame using the recoil mass technique

In the top rest frame:

$$t \rightarrow bR \rightarrow b \tau \nu_{\tau} \rightarrow b \nu_{\tau} \overline{\nu}_{\tau} \pi$$

where the resonance R is ether the W boson or the charged Higgs

$$\frac{1}{\Gamma_{R}} \frac{d\Gamma_{R}}{dy_{\pi}} = \frac{1}{(x_{\text{max}} - x_{\text{min}})} \times \left[(1 - P_{\tau}) \log \frac{x_{\text{max}}}{x_{\text{min}}} + 2P_{\tau} y_{\pi} \left(\frac{1}{x_{\text{min}}} - \frac{1}{x_{\text{max}}} \right), \text{ if } 0 < y_{\pi} < x_{\text{min}} \right]$$

$$\left[(1 - P_{\tau}) \log \frac{x_{\text{max}}}{x_{\text{min}}} + 2P_{\tau} \left(1 - \frac{y_{\pi}}{x_{\text{max}}} \right), \text{ if } x_{\text{min}} < y_{\pi} \right]$$

$$(1 - P_{\tau}) \log \frac{x_{\text{max}}}{y_{\pi}} + 2P_{\tau} \left(1 - \frac{y_{\pi}}{x_{\text{max}}} \right), \quad \text{if } x_{\text{min}} < y_{\pi}$$

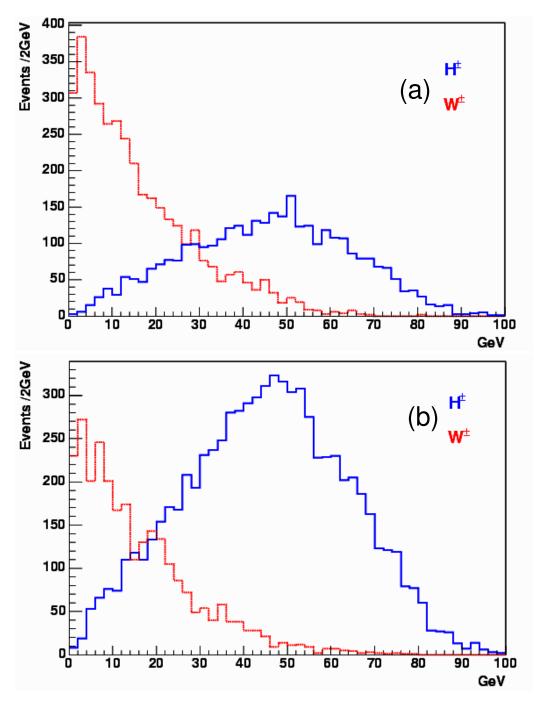
where:

$$y_{\pi} = \frac{E_{\pi}^{top}}{m_{top}}, \quad x_{min} = \frac{E_{\tau}^{min}}{m_{top}}, \quad x_{max} = \frac{E_{\tau}^{max}}{m_{top}}, \quad E_{\tau}^{min} = \frac{M_{R}^{2}}{2m_{top}}, \quad E_{\tau}^{max} = \frac{m_{top}}{2}$$

Recall: $P_{\tau}^{W} = -1$ and $P_{\tau}^{H} = 1$

M. Nojiri: Boos, Martyn, Moortgat-Pick, Sachwitz, Sherstnev and Zerwas for stau pair production: (R equiv. stau)

π -meson energy spectrum in the top rest frame



Two MSSM benchmark MSSM scenarios: common parameters:

$$M_{Q} = M_{U} = M_{D} = M_{\tilde{g}} = M_{2} = 1 \text{ TeV}$$

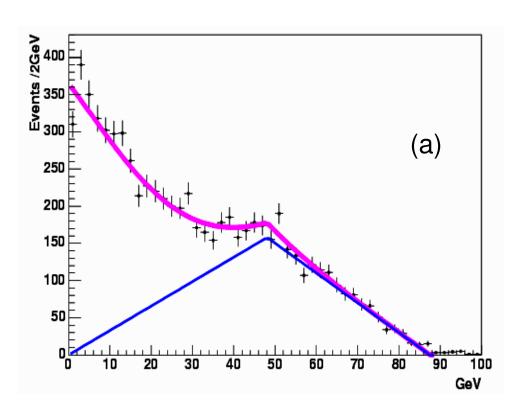
$$A_{t} = 500 \text{ GeV}$$

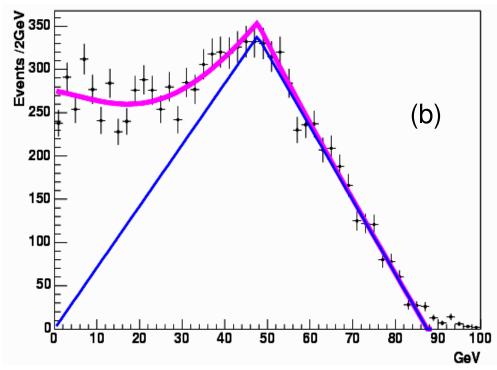
$$\tan \beta = 50 \qquad m_{H^{\mp}} = 130 \text{ GeV}$$

a)
$$\mu = 500 \text{ GeV}$$

 $\Rightarrow BR (t \rightarrow H^+b) = 10 \%$
b) $\mu = -500 \text{ GeV}$
 $\Rightarrow BR (t \rightarrow H^+b) = 24 \%$

Performing a fit to the simulated signal + background





one can determine the value of

In particular we obtain:

(no systematics/detector effects)

$$x_{\min}^{H} = m_{H^{\mp}}^{2} / 2m_{\text{top}}^{2}$$

a)
$$m_{H^{\mp}} = (129.4 \pm 0.9) \text{ GeV}$$

b)
$$m_{H^{\mp}} = (129.7 \pm 0.5) \text{ GeV}$$

CPsuperH

 Code to compute Higgs spectrum, couplings and decay modes in the presence of CP-violation

Lee, Pilaftsis, M.C., Choi, Drees, Ellis, Lee, Wagner.'03

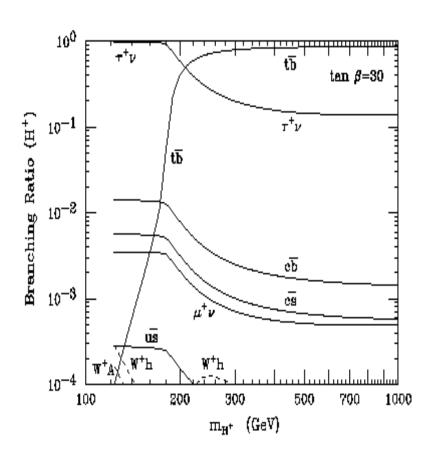
- CP-conserving case: Set phases to zero. Similar to HDECAY, but with the advantage that charged and neutral sector treated with same rate of accuracy.
- Combines calculation of masses and mixings by M.C., Ellis, Pilaftsis,
 Wagner. with analysis of decays by Choi, Drees, Hagiwara, Lee and Song.
- Available at

http://theory.ph.man.ac.uk/~jslee/CPsuperH.html

Conclusions

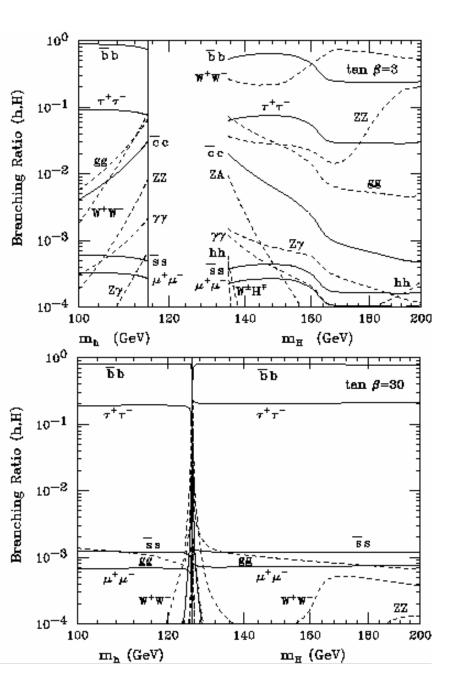
- Low energy supersymmetry has an important impact on Higgs physics.
- It leads to definite predictions to the Higgs boson couplings to fermions and gauge bosons.
- Such couplings, however, are affected by radiative corrections induced by supersymmetric particle loops. It affects the searches for Higgs bosons at hadron and lepton colliders in an important way.
- Tau Lepton polarization is a powerful discriminative characteristic to separate charged Higgs signal
 - →two representative scenarios with tH+b suppressed/enhanced couplings shown for ILC.
- Fit to pion spectra from polarized tau decays allows to extract light charged Higgs masses with $\delta m_{H^{\mp}} \approx 0.5 1\, GeV$ (theoretical study, but only P_{τ} from $\tau^{\pm} \to \pi^{\pm} \nu_{\tau}$ used!)

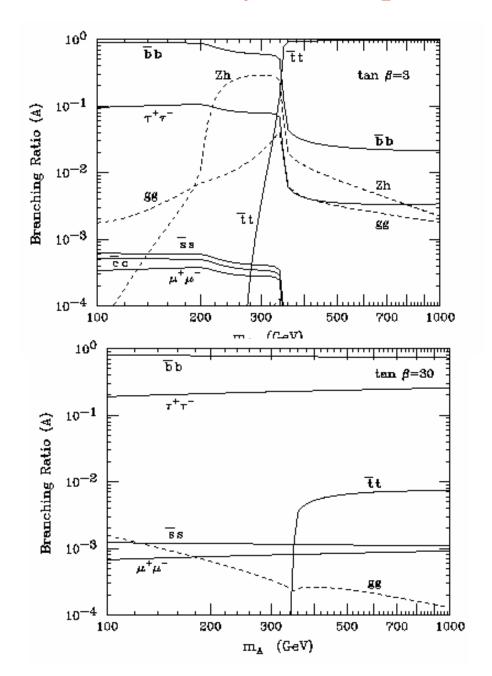
Variation of BR(H⁺⁻→tb) depending on parameter space

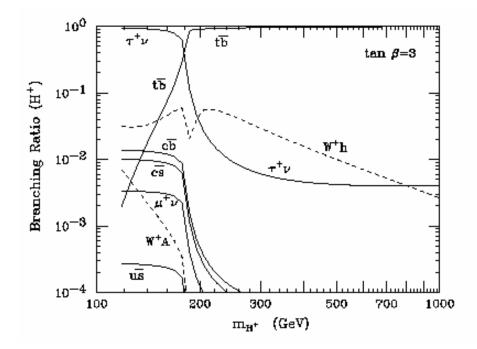


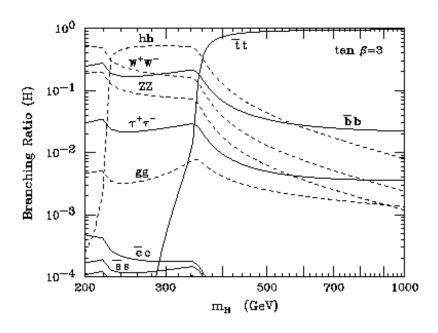
Neutral MSSM Higgs Branching Ratios

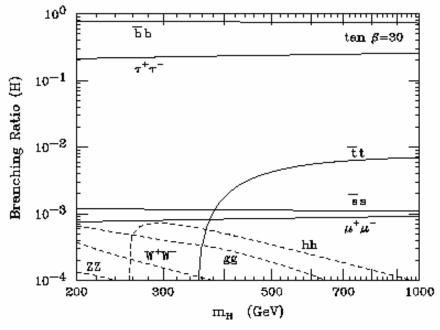
large $\tan \beta$: h, H, A to $bb, \tau^+\tau^-$ dominate low $\tan \beta$: richer pattern



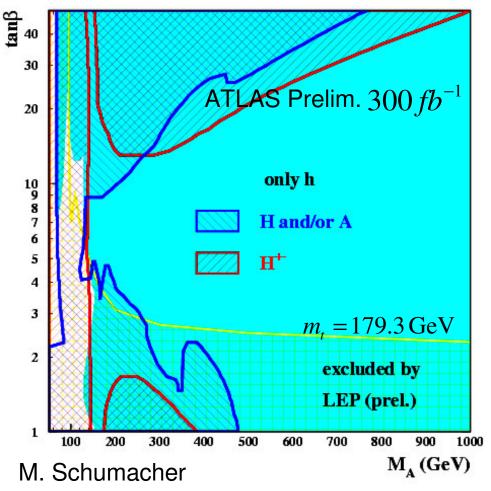








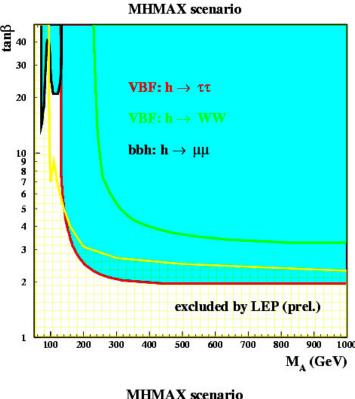
LHC Prospects for MSSM Higgs Discovery:

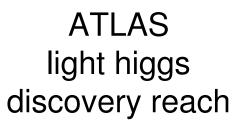


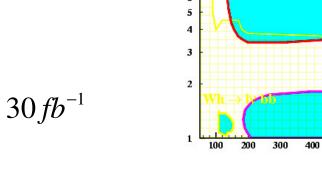
- The whole parameter space can be covered by Higgs searches in the CP conserving MSSM already with 30 fb-1
- Only the lightest Higgs can be discovered in a large area of MSSM parameter space
- Decay of h in different modes for one production channel may allow to measure ratios of decay rates and BR's

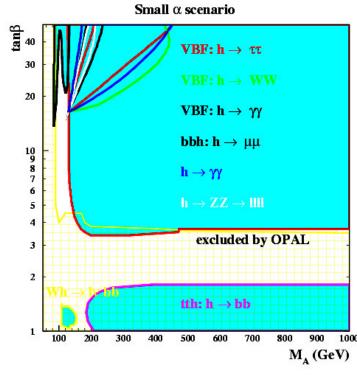
VBF with
$$h, H \to WW, \tau^+\tau^-, \gamma\gamma; gg \to \phi^0 \to \gamma\gamma, \mu\mu, \tau\tau, WW, ZZ$$

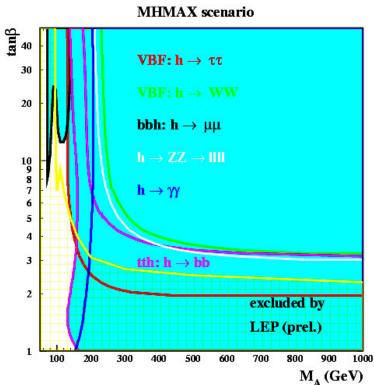
 $\phi^0 t\bar{t}(b\bar{b})$ with $\phi^0 \to , b\bar{b}, \gamma\gamma(\mu\mu, \tau\tau); gb(t\bar{t}) \to tH^{\pm}(\to \tau\nu(tb))$
 $gg \to H/A \to t\bar{t}t\bar{t}, H \to hh \to \gamma\gamma b\bar{b}, A \to Zh \to llb\bar{b}$













CP Violation in the MSSM

- In low energy SUSY, there are extra CP-violating phases beyond the CKM ones, associated with complex SUSY breaking parameters
- One of the most important consequences of CP-violation is its possible impact on the explanation of the matter-antimatter asymmetry.

Electroweak baryogenesis may be realized even in the simplest SUSY extension of the SM, but demands new sources of CP-violation associated with the third generation sector and/or the gaugino-Higgsino sector.

- These CP-violating phases may induce effects on observables such as new contributions to the e.d.m. of the electron and the neutron.
 - However, effects on observables are small in large regions of parameter space
- In the Higgs sector at tree-level, all CP-violating phases, if present, may be absorved into a redefinition of the fields.
- CP-violation in the Higgs sector appears at the loop-level, associated with third generation scalars and/or the gaugino/Higgsino sector, but can still have important consequences for Higgs physics

Higgs Potential → Quantum Corrections

Minimization should be performed with respect to real and imaginary parts of Higgs fluctuations $H_1^0 = \phi_1 + iA_1$ $H_2^0 = \phi_2 + iA_2$

Performing a rotation: $A_1, A_2 \implies A, G^0$ (Goldstone)

Main effect of CP-Violation is the mixing $\left(egin{array}{c} A \\ \Phi_1 \\ \Phi_0 \end{array} ight) = \mathcal{O} \left(egin{array}{c} H_1 \\ H_3 \end{array} ight)$

In the base (A, ϕ_1, ϕ_2) :

$$M_N^2 = \begin{bmatrix} \mathbf{m_A^2} & (\mathbf{M_{SP}^2})^{\mathrm{T}} \\ \mathbf{M_{SP}^2} & \mathbf{M_{SS}^2} \end{bmatrix}$$

 $\boldsymbol{M}_{N}^{2} = \begin{bmatrix} \mathbf{m}_{A}^{2} & (\mathbf{M}_{SP}^{2})^{\mathrm{T}} \\ \mathbf{M}_{SP}^{2} & \mathbf{M}_{SS}^{2} \end{bmatrix}$ $\begin{array}{c} \boldsymbol{M}_{SS}^{2} \text{ is similar to the mass matrix in} \\ \text{the CP conserving case, and} \\ \boldsymbol{M}_{A}^{2} \text{ is the mass of the would-be CP-odd Higgs.} \end{array}$

 M_{SP}^2 gives the mixing between would-be CP-odd and CP-even sates, predominantly governed by stop induced loop effects

$$\mathbf{M}_{\mathrm{SP}}^{2} \propto \frac{\mathbf{m}_{\mathrm{t}}^{4}}{16 \, \pi^{2} \, \mathrm{v}^{2}} \, \mathrm{Im} \left(\frac{\mu \, \mathbf{A}_{\mathrm{t}}}{\mathbf{M}_{\mathrm{s}}^{2}} \right)$$

ng between would-be CP-odd redominantly governed by stop $\mathbf{M}_{SP}^2 \propto \frac{\mathbf{m}_t^4}{\mathbf{16}\,\pi^2\,\,\mathbf{v}^2}\, \mathbf{Im} \left(\frac{\mu\,\mathbf{A}_t}{\mathbf{M}_S^2}\right)$ $\tilde{t}_1, \tilde{t}_2, \tilde{t}_1, \tilde{t}_1^*$ $\tilde{t}_1, \tilde{t}_2, \tilde{t}_1, \tilde{t}_1^*$

Gluino phase relevant at two-loop level. Guagino effects may be enhanced for large tan beta

Interaction Lagrangian of W,Z bosons with mixtures of CP even and CP odd Higgs bosons

$$\begin{array}{rcl} g_{H_{i}VV} &=& \cos\beta\,\mathcal{O}_{1i} + \sin\beta\,\mathcal{O}_{2i} \\ g_{H_{i}H_{j}Z} &=& \mathcal{O}_{3i}\left(\cos\beta\,\mathcal{O}_{2j} - \sin\beta\,\mathcal{O}_{1j}\right) - \mathcal{O}_{3j}\left(\cos\beta\,\mathcal{O}_{2i} - \sin\beta\,\mathcal{O}_{1i}\right) \\ g_{H_{i}H-W+} &=& \cos\beta\,\mathcal{O}_{2i} - \sin\beta\,\mathcal{O}_{1i} + i\mathcal{O}_{3i} \\ \mathcal{O}_{ij} \longrightarrow \text{analogous to } \sin(\beta-\alpha) \,\,\&\,\cos(\beta-\alpha) \end{array}$$

 \rightarrow All couplings as a function of two: $g_{\rm H_k VV} = \mathcal{E}_{ijk} g_{\rm H_i H_i Z}$

and sum rules:
$$\sum_{i=1}^{3} g_{H_i ZZ}^2 = 1$$
 $\sum_{i=1}^{3} g_{H_i ZZ}^2 m_{H_i}^2 = m_{H_1}^{2,\text{max}} \lesssim 135 \text{ GeV}$

(equiv. to CP-conserv. case)

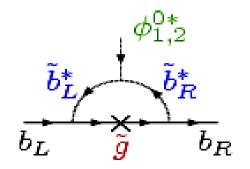
upper bound remains the same

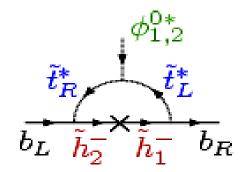
Decoupling limit: $m_{H^+} \gg M_Z$

- Effective mixing between the lightest Higgs and the heavy ones is zero
- → H₁ is SM-like
- Mixing in the heavy sector still relevant!

Yukawa Couplings: CP violating vertex effects

$$-\mathcal{L}_{\phi^0\bar{b}b}^{\text{eff}} = (h_b + \delta h_b) \,\phi_1^{0*} \,\bar{b}_R b_L + \Delta h_b \,\phi_2^{0*} \,\bar{b}_R b_L + \text{h.c.}$$





coupling Δh_b generated by SUSY breaking effects

$$egin{array}{l} rac{\delta h_b}{h_b} & \sim & rac{2lpha_s}{3\pi} rac{m_{ar{g}}^* A_b}{\max{(Q_b^2,|m_{ar{g}}|^2)}} - rac{|h_t|^2}{16\pi^2} rac{|\mu|^2}{\max{(Q_t^2,|\mu|^2)}} \ rac{\Delta h_b}{h_b} & \sim & rac{2lpha_s}{3\pi} rac{m_{ar{g}}^* \mu^*}{\max{(Q_b^2,|m_{ar{g}}|^2)}} + rac{|h_t|^2}{16\pi^2} rac{A_t^* \mu^*}{\max{(Q_t^2,|\mu|^2)}} \ \end{array}$$

•The one loop effects to the Yukawa couplings introduce CP-violating effects which are independent of the Higgs mixing

the phase of the superfield b_R is real and positive:

$$h_b = \frac{g_w m_b}{\sqrt{2} M_W \cos \beta \left[1 + \frac{\delta h_b}{h_b} + \left(\frac{\Delta h_b}{h_b} \right) \tan \beta \right]}$$

Higgs boson-quark Lagrangian

• taking into account both CP-violating self-energy and vertex effects (similar vertex effects in the up quark sector, but no tan β enhancement)

$$L_{Hf\bar{f}} = -\sum_{i=1}^{3} H_{i} [(g_{W} m_{d} / 2M_{W}) \overline{d} (g_{H_{i}dd}^{S} + g_{H_{i}dd}^{P} \gamma_{5}) d + (g_{W} m_{u} / 2M_{W}) \overline{u} (g_{H_{i}uu}^{S} + g_{H_{i}uu}^{P} \gamma_{5}) u]$$

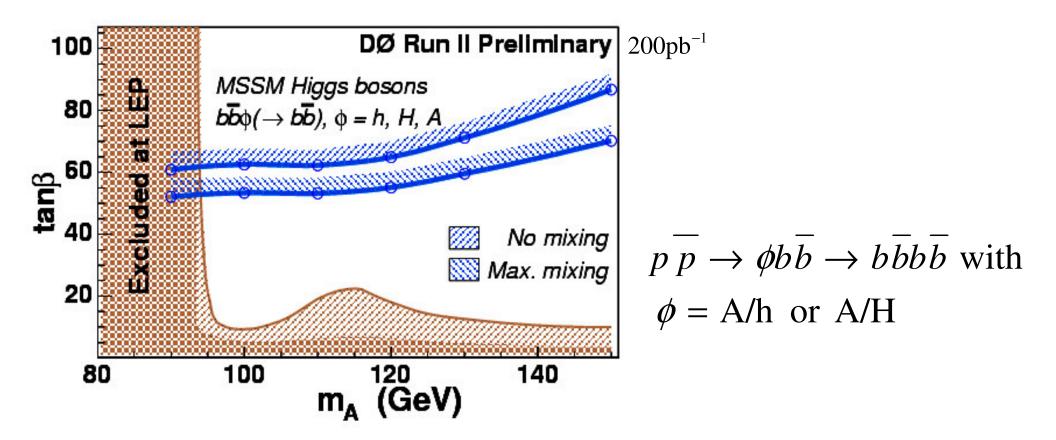
with:

$$g_{H_i dd}^{S} = \frac{1}{h_b + \delta h_b + \Delta h_b \tan \beta} \left\{ \operatorname{Re}(h_b + \delta h_b) \frac{O_{1i}}{\cos \beta} + \operatorname{Re}(\Delta h_b) \frac{O_{2i}}{\cos \beta} - \left[\operatorname{Im}(h_b + \delta h_b) \tan \beta - \operatorname{Im}(\Delta h_b) \right] O_{i3} \right\}$$

$$g_{H_i dd}^{P} = \frac{1}{h_b + \delta h_b + \Delta h_b \tan \beta} \left\{ \left[\operatorname{Re}(\Delta h_b) - \operatorname{Re}(h_b + \delta h_b) \tan \beta \right] O_{31} \right\}$$

$$-\operatorname{Im}(h_b + \delta h_b) \frac{O_{1i}}{\cos \beta} - \operatorname{Im}(\Delta h_b) \frac{O_{2i}}{\cos \beta}$$

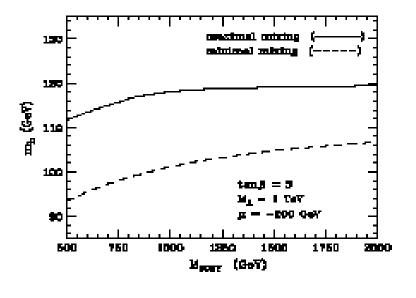
Present Tevatron reach in the CP conserving MSSM Higgs sector

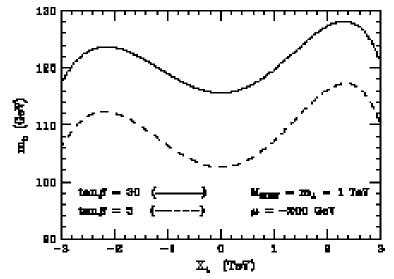


With about 5 fb-1 one can expect to test the regime with:

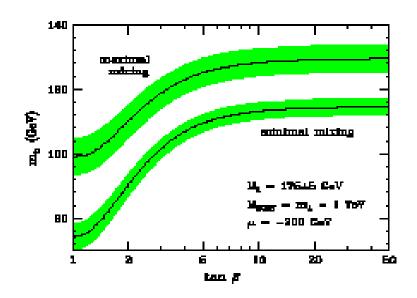
 $\tan \beta \approx 10$ and $m_A \approx 100 \,\text{GeV} ---\tan \beta \approx 50$ and $m_A \approx 250 \,\text{GeV}$

main effects already present in one-loop formulae





$$M_{SUSY} \equiv M_Q = M_U = M_D$$



- m_{\star}^4 enhancement
- logarithmic sensitivity to $m_{\tilde{t}_s}$
- depend. on \tilde{t} -mixing X_t

$$\implies$$
 max. value $X_t \sim \sqrt{6}M_S$

(scheme depend.) small asym. at h.o.

M.C. & Haber

$$M_{SUSY} \equiv M_Q = M_U = M_D$$
 if $M_{SUSY} \gg m_t \rightarrow M_S^2 \simeq M_{SUSY}^2$

• at 2 loops $\rightarrow M_{\tilde{a}}$ dependence

Radiative corrections to Higgs Masses

important quantum correc. due to loops of particles and their superpartners: incomplete cancellation due to SUSY breaking \Longrightarrow main effects: top and stop loops; bottom and sbottom loops in large $\tan \beta$ regime

The stop mass matrix:

$$\begin{pmatrix} M_Q^2 + m_t^2 + D_L & m_t X_t \\ m_t X_t & M_U^2 + m_t^2 + D_R \end{pmatrix} \qquad D_L \equiv \left(\frac{1}{2} - \frac{2}{3}\sin^2\theta_W\right) M_z^2 \cos 2\beta \text{ and } D_R \equiv \frac{2}{3}\sin^2\theta_W M_z^2 \cos 2\beta$$

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{2 g_2^2 m_t^4}{8\pi^2 M_W^2} \left[\ln(M_S^2/m_t^2) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] + \text{h.o.}$$

$$M_S^2 = \frac{1}{2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)$$
 and $X_t = A_t - \mu/\tan\beta \longrightarrow \text{stop mixing}$

- two-loop log. and non-log.effects are numerically important → computed by different methods:
 - diagrammatic
 effective potential
 RG-improved effective potential
 - upper limit on Higgs mass: $m_h \lesssim 135 \text{ GeV}$

$$M_S = 1 \rightarrow 2 \text{ TeV} \Longrightarrow \Delta m_h \simeq 2 - 5 \text{ GeV}$$

 $\Delta m_t = 1 \text{ GeV} \Longrightarrow \Delta m_h \sim 1 \text{ GeV}$

• Supersymmetric relations between couplings imply $m_h \le m_Z$

After quantum corrections, Higgs mass shifted due to incomplete cancellation of particles and superparticles in the loops

Main Quantum effects: m_t^4 enhancement; dependence on the stop mixing X_t ; logarithmic sensitivity to the stop mass (averaged: M_S)

Upper bound:

 $m_h \leq 135 \,\mathrm{GeV}$

stringent test of the MSSM

LEP MSSM HIGGS limits:

 $m_h > 91.0 \text{GeV}; m_A > 91.9 \text{GeV}$ $m_{H^{\pm}} > 78.6 \text{GeV}$

$$m_h^{\rm SM-like} > 114.6 \, \rm GeV$$

